Google Colaboratory で Matplotlib を動かす準備

2023年度2Q 5c/6c(IL2) 木曜日

担当:地引

TA: 增井

はじめに

これから行なうこと

- ・少し前までは、教育用計算機システムにインストールされている gnuplot を用いてデータの整理/解析を行ないました。
- 最近は、情報通信環境を取り巻く状況を考慮し、ここではクラウド環境上で 提供されるサービスを利用することにしています。
 - 個人のPCや教育用計算機システム上の gnuplot を自己裁量で利用してもよいです。
- 今回利用するサービスの構成:
 - Google が提供するプログラミング言語 Python の開発環境である Google Colaboratory を利用し、その上で gnuplot に相当する Matplotlib を使います。
 - とは言え、Python による本格的なプログラミング演習をするわけではありません。 まずは、Colab 上で提供される Matplotlib を使うだけです。

Google Colaboratory を利用するための準備

- Google Colaboratory はクラウド上のサービスで、Google アカウントを用いてログインした後に利用します。
 - つまり、事前に Google アカウントを取得しておく必要があります。
- 既に Google アカウントを取得しており、それを利用してもよいという 人は、それを使って下さい。
- Google アカウントを取得していない or アカウントを切り分けて使いたいという人は、下記のリンクをクリックし、アカウントを作成して下さい。

Googleアカウントの作成 (https://www.google.com/accounts/NewAccount)

Google Colaboratory の基本操作

Google Coraboratory へのログイン(1)

- Google Coraboratory は、下記の URL からログインできます。
 - https://colab.research.google.com/notebooks/welcome.ipynb?hl=ja
 - 右端上に表示される <mark>ログイン</mark> をクリックし、各自の Google アカウントを用いて ログインして下さい。

Google Coraboratory へのログイン(2)

ログイン後は、以下のようなウィンドウが表示されます(変化に気付きにくい…)。

Matplotlib ファイルの作成

注意:

以下では、便宜上、Google Colaboratory 内で作成する Python および Matplotlib のファイルを総称して、「プログラム ファイル」と呼ぶことにします。

とは言え、情報リテラシでは、Python によるプログラミング スキルの習得が 目標ではありません。

3Q/4Q のコンピュータ サイエンスでは、Google Colab 上でより本格的な Python プログラムを作成する場合があります。

プログラムの記述・実行

プログラムのコピー&ペースト

セルの操作

ノートブックを開く

Google Colaboratory や Jupyter Notebook では、プログラム ファイルを ノートブックと呼びます。

ノートブックを開く(1)

Google Coraboratory にログインする or [ファイル] \rightarrow [ノートブックを開く] を 選択すると、左のようなファイル一覧が表示されます。

しかし、これは最近開いたファイルの一覧であり、自分が開きたいファイルはこの中にないかも知れません(履歴を消すなど)。

そのような場合は、これから説明する方法でファイルを探して下さい。

ノートブックを開く(2)

ノートブックを開く(3)

重要!!(1)

とは言え、ここに一覧されるノートブックは、Google Drive 内にある全ノートブックの検索結果です。 当然、ノートブックが増えて来ると、ズラズラと一覧され、お目当てのノートブックを探すのも大変です。

17

重要!!(2)

保存先は Google Drive なので、別途 Google Drive にログインして、"Colab Notebooks" フォルダ以下にサブ フォルダを作成し、適宜ノートブックを分類して整理しましょう。

Colab からノートブックを開く時は、前スライドにある検索結果一覧ではなく、左側に表示される

ファイル システムを辿ってお目当てのノートブックを指定できるようになりましょう (重要なスキルです)。

Colab のメニューは、Google Drive をブラウザで開いた時と同じなので、操作も難しくないはずです。

ノートブックを開く(4) … 続き

ノートブックを開く(5)

データファイルの扱い

Google Colaboratory のファイル管理イメージ

Google Colaboratory では、扱うファイルを下記①,②のどちらかに保存します。 プログラム ファイルは、特に準備をしなくても①に保存されますが、データ用のファイルを 保存する場合は、どちらに保存しても事前の準備や保存後の扱いが少々面倒です。

①にあるデータ ファイル(プログラム ファイルではない)を Colab からアクセスするには、Google Drive をマウント (一つのファイル システムとして接続)する必要があります。 現状では、マウント処理を簡便に行なえない、およびパス名が複雑となるため、今回は②へ保存します(②はマウントが不要で、より直感的に扱えます)。

但し、Colab 内に保存したファイルは、一定時間後に削除されてしまうことに注意して下さい(後で補足します)。 テーマ1において習得するスキルの一つは、

「Matplotlib ファイルの実行場所(カレント フォルダ)と データ ファイルの階層的な位置関係を正しく把握して、 プログラム内に表記できること」です。

2023/06/22

情幸

データファイルのアップロード(1)

- テーマ 1 の解析で利用するデータを Colab にアップロードする手順
 - データ(theme1.zip)は、情報リテラシ第二 5c/6c ページの下記にあります。

"データの処理と加工"で扱う解析用データ(for matplotlib)

このリンクをクリックし、まずは手元の情報機器へダウンロードして下さい。

- その後、次スライド以降に従い、Colab ヘアップロードします。

• 注意!!

- Safari では、5c/6c ページより theme1.zip をダウンロードした段階で zip が 自動展開され、Colab へ効率的にアップロードできないことがあります。
- これを回避する簡潔な方法を以下に紹介します。
 - ≫ a. Chrome を使う。
 - ≫b. Safari を使う場合は、

Safari の環境設定を開いて「一般」タブを選択し、

「ダウンロード後、"安全な"ファイルを開く」のチェックを外す。

データファイルのアップロード(2)

- ① 一番左にあるフォルダの形をしたアイコン(ホバー表示は"ファイル")をクリックします。
- ② この領域に、ファイル システムの階層構造が表示されます。(手元の)ファイルを、ここへドラッグ&ドロップすると、Colab にアップロードされます。

データファイルのアップロード(3)

データファイルのアップロード(4)

データファイルのアップロード(5)

データファイルの解凍(1)

Colab では、コードの部分にプログラムではなくコマンドを書くことができます。 コマンドは、先頭に!を付けます。

上の例では、ファイル システムの階層構造において、自分がどこにいるかを表示する(つまり、カレント フォルダを表示する) pwd コマンドと、フォルダ内のファイルを一覧する Is コマンド (-F オプション) を実行しています。その結果として、カレント フォルダはルート フォルダ "/" の下にある content フォルダであり、そこには sample_data フォルダと theme1.zip ファイルがあることが示されています(後で補足します)。

データファイルの解凍(2)

カレント フォルダと演習用データ ファイルの位置関係を確認できたので、unzip コマンドで解凍します(カレント フォルダ内なのでファイル名だけでOK)。 左側の階層図には、少し遅れて反映されます。

データファイルの解凍(3)

以後は、theme1 フォルダにある data フォルダ以下にある各データ ファイルを対象に、Matplotlib で解析を行ないます。

Matplotlib ファイルからは、データ ファイルのパス名を指定する必要があります。 上の図を見て、データ ファイル群の全体構造をよく確認しておきましょう。

要注意(1)

左側に見える階層構造のビューですが、 階層構造を展開しても、ノートブックの カレント フォルダは変わりません。 ノートブックのカレント フォルダを変えたい 場合は、セルで!cd コマンドを実行します。 エクスプロローラや Finder とは、違うので 注意して下さい。

要注意(2)

2023/06/22

データ ファイルのダウンロード

困った時の対応

エラー メッセージを確認しよう(1)

```
import numpy as np
import matplotlib.pyplot as plt

x0_data, y0_data = np.loadtxt("theme1/data/cnm/time-join-500K.data", unpack=True)
plt.plot(x0_data, y0_data, label="#Nodes = 500K", width=10000)

plt.legend()
plt.show()
```

例えば、上のようなプログラムを作成したとします。各コードの意味は、講義が進むにつれ 説明をしますが、取り敢えず上のプログラムでは、plt.bar() 関数で棒グラフを表示させ ようとした、と考えて下さい。

しかし、間違えて線グラフを表示させる plt.plot() 関数を使ってしまいました。 実際に動かしてみましょう。

エラー メッセージを確認しよう(2)

```
import numpy as np
import matplotlib.pyplot as plt
                                                          作成した Matplotlib プログラムに誤りがある場合、
                                                          colab は誤りの部分とその理由を教えてくれます。
xO_data, yO_data = np.loadtxt("theme1/data/cnm/time-join-500K.data",
plt.plot(x0_data, y0_data, label="#Nodes = 500K", width=10000)
                                                          この例では、線グラフに存在しない "width" を設定
plt.legend()
                                                          している部分が誤りだと表示されています。
plt.show()
                                                          これより、plot.plot() を使ったことが誤りだと気付き
                                   Traceback (most recent cal ます。
AttributeError
<ipython-input-29-01029a0a6ebf> in <module>()
     4 x0_data, y0_data = np.loadtxt_theme1/data/cnm/time-join-500K.data", unpack=True)
----> 5 plt.plot(x0_data, y0_data, 4abel="#Nodes = 500K", width=10000)
     7 plt.legend()
                                9 frames
/usr/local/lib/python3.7/dist-packages/matplotlib/art/st.py in _update_property(self, k, v)
  1000
                    if not callable(func):
                       raise AttributeError('{/r} object has no property {!r}'
  1001
-> 1002
                                          format(type(self).__name__, k))
  1003
                    return func(v)
  1004
AttributeError: 'Line2D' object has no property 'width'
```