数値解析の入り口

2023年度1Q 5c/6c(IL1) 木曜日

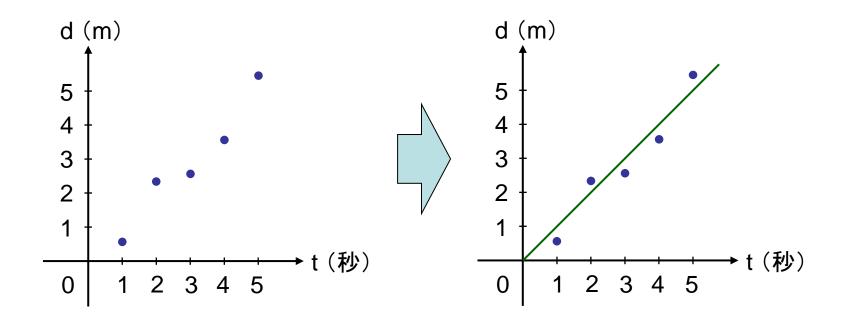
担当:地引

TA: 增井

数值解析(基本編)

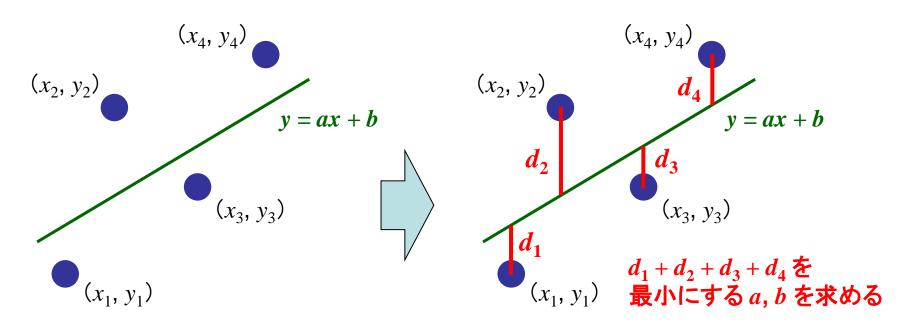
最小二乗法とは

- 計測データの傾向を分析するための解析手法
- 下左のような二次元データが存在した場合、下右のように各データに最も近い直線を求める。



最小二乗法の考え方

- 各データに最も近い直線とは、各データと直線との 全距離が最も小さくなる直線
- 各データを (x_1, y_1) ~ (x_n, y_n) とし、直線を y = ax + b として、各データと直線との距離を求める。
- 距離を最小にする a, b の組を求める。



最小二乗法の計算

- まずは (x₁, y₁) について考える。
- (x_1, y_1) と y = ax + b 上の点 (x_1, y_1') との距離は、 $d_1 = y_1 y_1' = y_1 ax_1 b$ となる。
- 同様に $d_2 \sim d_n$ を求め、 $S = d_1^2 + d_2^2 + \dots + d_n^2$ を計算すると、S は a, b の二次式になる。
 - $-S(a,b) = Aa^2 + Bb^2 + Cab + Da + Eb + F$
- S(a,b)を最小にする a,b を、偏微分(ここでは説明しませんが、初年度の数学で取り上げるはず)を利用して求める。

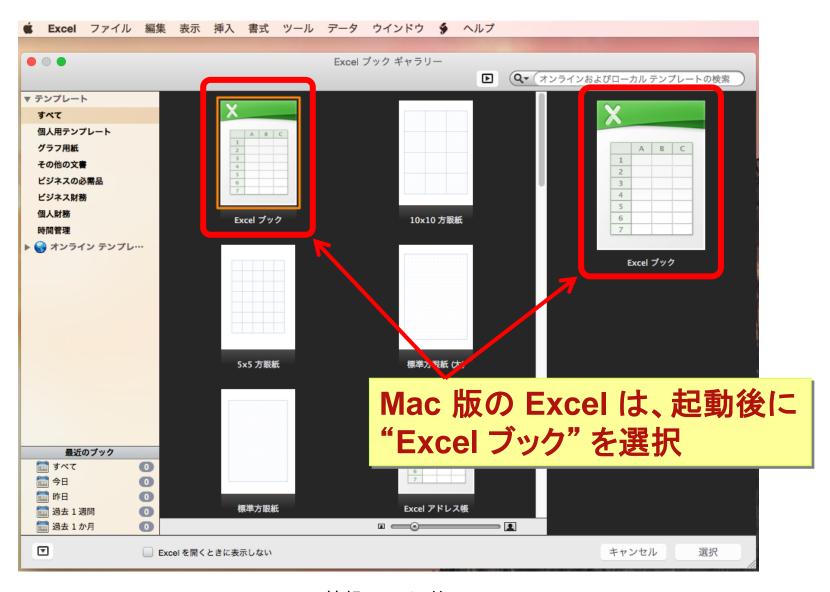
 $y_1)$ d_1 (x_1, y_1')

係数 a, b を求める式

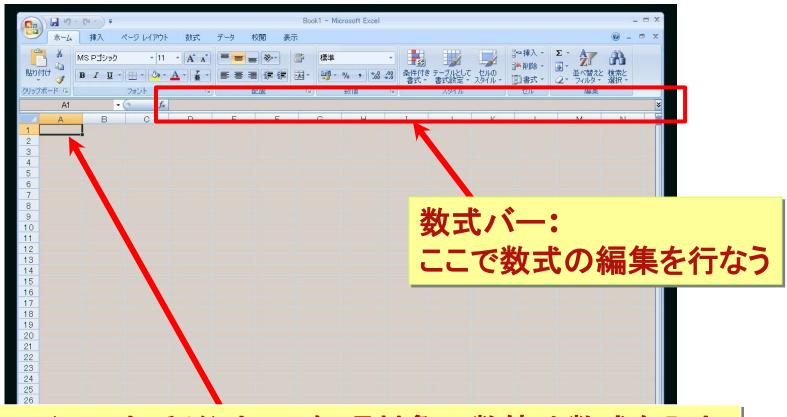
$$a = \frac{n\sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$b = \frac{\sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} x_{i} y_{i} \sum_{i=1}^{n} x_{i}}{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

表計算ツールの起動

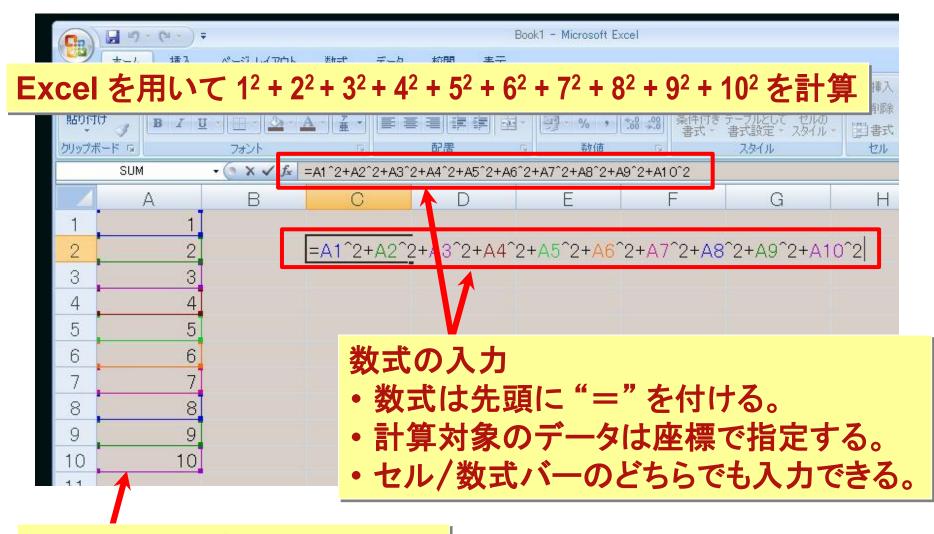


表計算の利用(1)



このマス(セルと呼ぶ)内に、処理対象の数値や数式を入力

表計算の利用(2)



セルに処理対象の数値を入力

表計算の利用(3)

- ・最小二乗法の係数を求めるには…
 - 例えば a を求めるには、a の各項毎に計算し、各計算結果を まとめる。
 - 例えば、 $n\sum x_i y_i$ 、 $\sum x_i\sum y_i$ などをそれぞれ計算し、 各計算結果から "= (D1 – D2)/(D3 – D4^2)" として求める。
 - 上の例では $n\sum x_i y_i$ などの計算結果(つまりは数式)を、 D1 ~ D4 に入力したと仮定
- データが増えると、全てを座標で記述するのが面倒
 - Excel には、数式の記述を支援する関数が用意されている。
 - ∑を計算する関数: SUM(開始座標,終了座標)
 - 他の関数については、Excel 用の書籍などを参照のこと。

演習

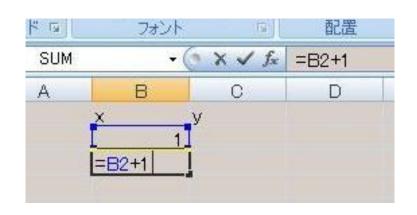
• $x_i = \{i\}, y_i = \{i^2\}$ とした場合、

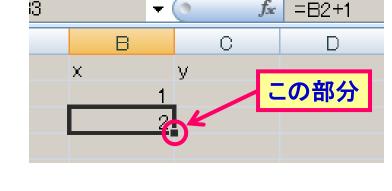
$$\sum_{i=1}^{20} x_i^2 + \sum_{i=1}^{20} x_i (y_i + 1) + \sum_{i=1}^{20} (y_i - 1)^2$$

を求めなさい。

Excel での実例(1)

表計算 ⇒ 計算対象となる数値をセルに入力しておく必要がある。 大量の数値を入力するにはコピー機能の利用が便利

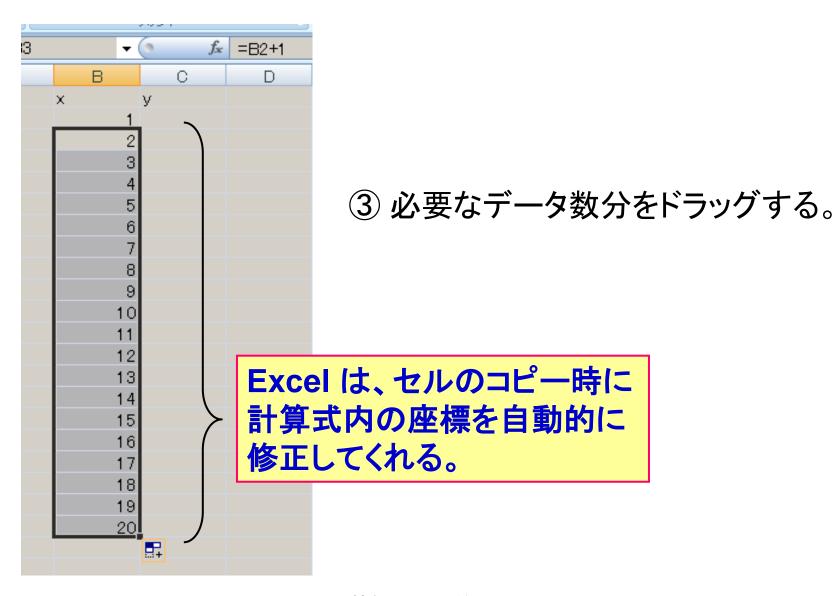




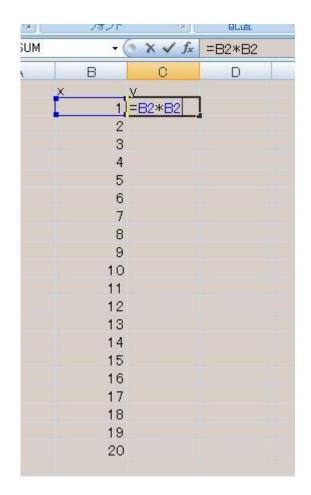
① まずは、*x* の初期値と計算式を一つ入力

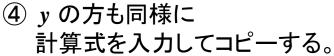
② 計算式のセルをクリックし、 右下隅のポイントをドラッグ

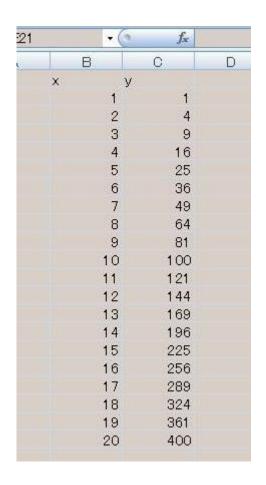
Excel での実例(2)



Excel での実例(3)







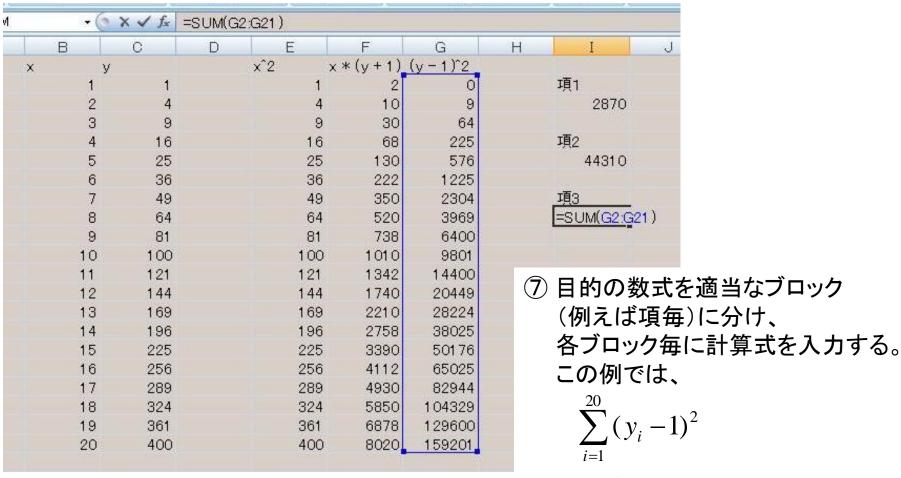
⑤ *x*, *y* 両方の入力を終えたところ

Excel での実例(4)

В	С	D	E	F	G
<	у		x^2	x*(y+1)	$(y-1)^2$
	1 1		1	2	0
	2 4		4	10	9
	3 9		9	30	64
	4 16		16	68	225
1	5 25		25	130	576
	36		36	222	1225
	7 49		49	350	2304
- 3	3 64		64	520	3969
	9 81		81	738	6400
10	100		100	1010	9801
11	1 121		121	1342	14400
1:	2 144		144	1740	20449
13	3 169		169	2210	28224
1.	4 196		196	2758	38025
1!	5 225		225	3390	50176
10	3 256		256	4112	65025
1	7 289		289	4930	82944
11	324		324	5850	104329
1:	9 361		361	6878	129600
21	0 400		400	8020	159201

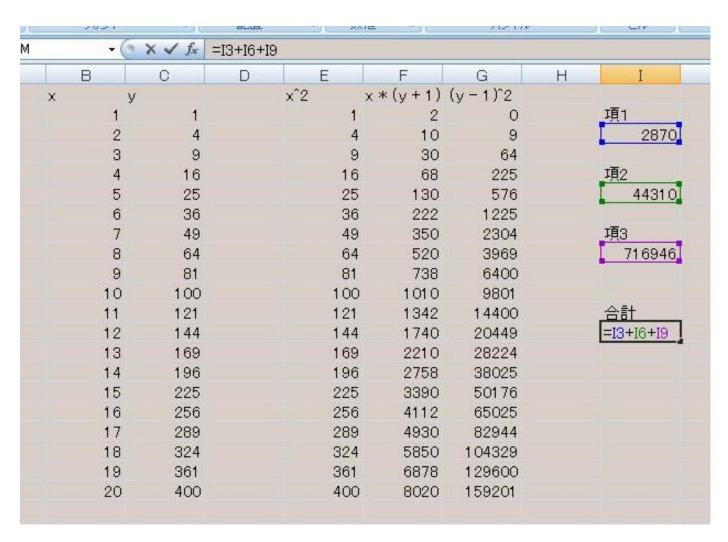
⑥ x^2 , $x \cdot (y + 1)$, $(y - 1)^2$ まで、全て入力する。

Excel での実例(5)



の計算式を入力したところ。

Excel での実例(6)



⑧ 最後に、全ブロックを合算して解析結果を出す。

17

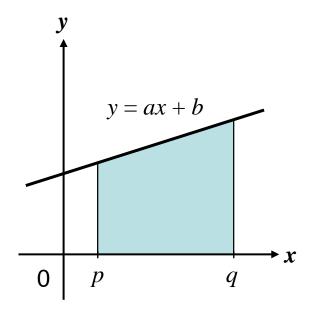
数値解析(応用編)

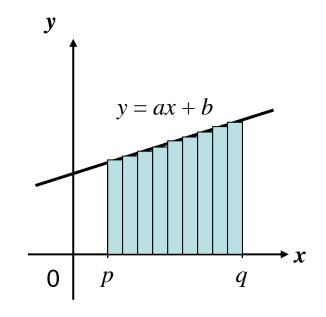
定積分の考え方

・ 例えば、次の積分計算を考える(左下図の水色の部分)。

$$\int_{p}^{q} ax + b \, dx = \left[\frac{a}{2} x^{2} + bx + c \right]_{p}^{q} = \frac{a}{2} q^{2} + bq + c - \left(\frac{a}{2} p^{2} + bp + c \right)$$

積分の意味を考えると、小さい矩形の集合に対して、 極限を取ったもの(右下図)。





定積分の計算

- Excel を用いて積分計算をすることもできる。
- ・ 具体的な手法は以下の通り。
 - 適当な列(例えば A1 ~ An)に、積分区間を n 等分した値を入力
 - A1 ~ An の値と被積分関数および積分区間/n より矩形の面積を求める(計算式を例えば B1 ~ Bn へ入力)。
 - ・i 番目の矩形の面積 = F(Ai) * [(q-p)/n]
 - 計算した n 個の矩形の面積 (B1 ~ Bn) を全て加える。
- 等分数 n を大きくしないと精度は高くならない。

微分方程式の計算(1)

- ・ 数値解析の考え方:
 - 計算の簡単な線形式で近似し、少しだけ動かす。
- ・ 簡単な微分方程式の解析にも利用できる。
 - どのようにやるのか、ちょっと見てみよう。
- 次の形をした微分方程式を満たす関数の形を調べる。

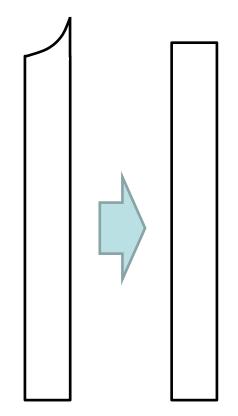
$$\frac{dy}{dx} = f(x, y)$$

以下の手法は、全ての微分方程式ではなく、 左のような形に(接線の傾きとして)変形できる ものが対象だと考えて下さい。

数値解析の考え方

【積分値の計算】

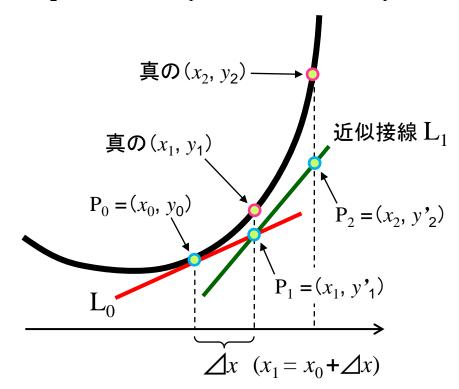
① 真の面積を、矩形で近似



x を少しだけ動かし、不明な計算を 簡単な計算(矩形の面積)で近似

【微分方程式の解】

- ① 真の (x_1, y_1) の値を、 L_0 上の P_1 で近似
- ② P₂の計算は、P₁を通る近似接線 L₁を利用



x を少しだけ動かし、不明な計算を 簡単な計算(近似接線 = 線形式)で近似

微分方程式の計算(2)

- ・ 具体的な手法は以下の通り。
 - ① 初期値を $P_0 = (x_0, y_0)$ とすると、 P_0 における接線は L_0 : $y y_0 = f(x_0, y_0) \cdot (x x_0)$ と表わせる。
 - ② x_0 から $\triangle x$ だけ変化した x_1 に対応する y_1 は、 L_0 上にある と近似し、 $y'_1 = f(x_0, y_0) \cdot (x + \triangle x x_0) + y_0$ より計算する。
 - y_1 の本当の値は、微分方程式の解である f(x,y) から求めなければならないが、 L_0 から近似的に求めてしまう(y_1)のがミソ
 - ③ $P_1 = (x_1, y_1)$ を初期値として ① へ戻り、 同様にして L_1 から近似値 $P_2 = (x_2, y_2)$ を計算する。
 - ④ 各座標 $P_0 \sim P_n$ を結んだグラフは、f(x, y) の近似となる。
 - △xの値を小さくしないと精度は高くならない。

微分方程式の計算(3)

$$\frac{dy}{dx} = x \, を初期値(2,2) で解いてみよう。$$

	В	C	D
	X座標	y座標	
P0	2.00	2.00	0.25
P1	2.25	2.50	
P2	2.50	3.06	
P3	2.75	3.69	
P4	3.00	4.38	
P5	3.25	5.13	R
P6	3.50	5.94	←
P7	3.75	6.81	\leftarrow
P8	4.00	7.75	
P9	4.25	8.75	
P10	4.50	9.81	
P11	4.75	10.94	
P12	5.00	< 12.13	
P13	5.25	13.38	
P14	5.50	14.69	

初期值

本来は、接線の傾きが入るので、 この部分もセルの計算式となるが、 今回は dy/dx = x という形なので、 x の値を(セルを)そのまま使っている。

$$y_{i+1} = f(x_i, y_i) \cdot (x_{i+1} - x_i) + y_i$$

Excel では、

$$\lceil = \boxed{\mathbf{B}_{i-1}} * (\mathbf{B}_i - \mathbf{B}_{i-1}) + \mathbf{C}_{i-1} \rfloor$$

$$x_{i+1} = x_i + \Delta x$$

Excel では

$$\Gamma = \mathbf{B}_{i-1} + \mathbf{D}_2 \rfloor$$

微分方程式の計算(4)

 $\frac{dy}{dx} = x$ を初期値(2, 2)で解いてみよう。

